|
Work hardening, also known as strain hardening or cold working, is the strengthening of a metal by plastic deformation. This strengthening occurs because of dislocation movements and dislocation generation within the crystal structure of the material.〔.〕 Many non-brittle metals with a reasonably high melting point as well as several polymers can be strengthened in this fashion. Alloys not amenable to heat treatment, including low-carbon steel, are often work-hardened. Some materials cannot be work-hardened at low temperatures, such as indium, however others can only be strengthened via work hardening, such as pure copper and aluminum.〔.〕 Work hardening may be desirable or undesirable depending on the context. * An example of undesirable work hardening is during machining when early passes of a cutter inadvertently work-harden the workpiece surface, causing damage to the cutter during the later passes. Certain alloys are more prone to this than others; superalloys such as Inconel require machining strategies that take it into account. * An example of desirable work hardening is that which occurs in metalworking processes that intentionally induce plastic deformation to exact a shape change. These processes are known as cold working or cold forming processes. They are characterized by shaping the workpiece at a temperature below its recrystallization temperature, usually at ambient temperature.〔.〕 Cold forming techniques are usually classified into four major groups: squeezing, bending, drawing, and shearing. Applications include the heading of bolts and cap screws and the finishing of cold rolled steel. In cold forming, metal is formed at high speed and high pressure using tool steel or carbide dies. The cold working of the metal increasing the hardness, yield strength, and tensile strength.〔Deringer-Ney, ("Cold Forming and Cold Heading Process" ), April 29th, 2014〕 ==History== Copper was the first metal in common use for tools and containers since it is one of the few metals available in non-oxidized form, not requiring the smelting of an ore. Copper is easily softened by heating and then cooling (it does not harden by quenching, as in cool water). In this annealed state it may then be hammered, stretched and otherwise formed, progressing toward the desired final shape, but becoming harder and less ductile as work progresses. If work continues beyond a certain hardness the metal will tend to fracture when worked and so it may be re-annealed periodically as the shape progresses. Annealing is stopped when the workpiece is near its final desired shape, and so the final product will have a desired stiffness and hardness. The technique of repoussé exploits these properties of copper, enabling the construction of durable jewelry articles and sculptures (including the Statue of Liberty). For metal objects designed to flex, such as springs, specialized alloys are usually employed in order to avoid work hardening (a result of plastic deformation) and metal fatigue, with specific heat treatments required to obtain the necessary characteristics. Devices made from aluminum and its alloys, such as aircraft, must be carefully designed to minimize or evenly distribute flexure, which can lead to work hardening and in turn stress cracking, possibly causing catastrophic failure. For this reason modern aluminum aircraft will have an imposed working lifetime (dependent upon the type of loads encountered), after which the aircraft must be retired. 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Work hardening」の詳細全文を読む スポンサード リンク
|